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Autoregressive processes with exponentially decaying probability distribution functions:
Applications to daily variations of a stock market index
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We consider autoregressive conditional heteroskedasticity~ARCH! processes in which the variancesy
2

dependslinearly on the absolute value of the random variabley assy
25a1buyu. While for the standard model,

wheresy
25a1by2, the corresponding probability distribution function~PDF! P(y) decays as a power law for

uyu→`, in the linear case it decays exponentially asP(y);exp(2auyu), with a52/b. We extend these results
to the more general casesy

25a1buyuq, with 0,q,2. We find stretched exponential decay for 1,q,2 and
stretched Gaussian behavior for 0,q,1. As an application, we consider the caseq51 as our starting scheme
for modeling the PDF of daily~logarithmic! variations in the Dow Jones stock market index. When the history
of the ARCH process is taken into account, the resulting PDF becomes a stretched exponential even forq
51, with a stretched exponentb52/3, in a much better agreement with the empirical data.

DOI: 10.1103/PhysRevE.65.046149 PACS number~s!: 02.50.Ey, 05.40.Fb, 87.23.Ge
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I. INTRODUCTION

Extensively employed in finance today, autoregress
conditional heteroskedasticity~ARCH! processes have bee
constructed to mimick the~often quite strong! variable vola-
tility of stock prices, by letting the variance of the rando
process being a function of the random variable itself@1,2#.
Interestingly, ARCH processes are characterized by pow
law tails in the associated probability distribution functio
~PDF’s! @3–5#. Since power laws are widespreadly observ
also in natural science phenomena@6#, the applicability of
ARCH processes to such fields as physics and biology
thus be expected to grow in popularity in coming years. D
spite the ubiquitous character of power-law decay in sev
physical and natural science problems, a variety of expon
tially decaying distribution functions, ranging from stretch
exponential~see, e.g., Ref.@7#! to stretched Gaussian deca
~see, e.g., Ref.@8#!, are also observed which, in most cas
are a result of long-range correlations in the system. T
question we wish to address here is how such different ty
of exponentially decaying distributions can be mode
within the context of short-range correlations, as for insta
in the case of ARCH processes, and how can they be im
mented for describing stock market behavior.

The paper is organized according to the following line
In Sec. II, we briefly recall the definition and simplest ve
sion of an ARCH process, and discuss how it can be mo
fied to yield exponentially decaying PDF’s. Secondly, w
generalize the ARCH model to the case of stretched ex
nential and stretched Gaussian PDF’s. In Sec. III, we ap
the results of the preceding section to financial data, aim
at describing the daily variations of a stock market index
particular, of the Dow Jones Industrial Average~DJIA!
within the period from 1928 to 2001. The comparison b
tween the empirical data and the model predictions indica
that the latter do not display all the characteristic aspect
the market, in particular, the long-range correlations of ab
lute returns~or volatility!. This suggests us that the missin
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feature of the model may be hidden in the ‘‘history’’ of th
process itself, and should be taken into account. T
is achieved by calculating, at each stepn, the standard
deviation

sT~n!5~^x2&T2^x&T
2!1/2 ~1!

over the previousT values of the process,$xn21 , . . . ,xn2T%.
The quantitysT(n) is used, together withxn21, to generate
the next valuexn , from a standard distribution. The origina
standard ARCH process corresponds to the caseT51, i.e.,
s1(n)[0. Here we useT5700 steps, aimed at fitting th
present data for the DJIA, where volatility correlations p
sist up to a time horizon of about 700 trading days~i.e.,
'3 yr). Incorporating a history in the model makes it no
Markovian, but it still remains simpler than the extensive
employed generalized ARCH~GARCH! processes, in which
the variance is a function of several of its previous valu
@9#. Finally, Sec. IV is devoted to the summary of our ma
results and conclusions.

II. ARCH „1… PROCESSES AND THEIR
GENERALIZATIONS

Let us consider the simplest case, i.e., an ARCH~1! pro-
cess@1#. It is defined as an iterative map of the formxn
5R(xn21), where the outcomexn , after thenth iteration
step, depends only on its previous valuexn21, andR(y) is a
random process. The latter is completely specified by
transition probability distribution functionW(y{x), gener-
ally assumed to be a Gaussian distribution,

W~y{x![
1

A2psy
2

expS 2
x2

2sy
2D , ~2!

obeying the normalization condition*2`
` dxW(y{x)51.

For standard ARCH~1! processes,sy
25a1by2, wherea.0

andb>0 are the model parameters. In this case, the ave
©2002 The American Physical Society49-1
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variance is^s2&5a/(12b). It can be shown that the PD
P(x) for ARCH~1! processes satisfies the self-consist
equation@1,3,5#

P~x!5E
2`

`

dy W~y{x! P~y!, ~3!

which decays as a power law,P(x);uxu2a, for uxu→`, with
a related to the parameter b by b2(a21)/2

52(a21)/2G(a/2)/Ap @3,5# ~see also@4#!. Clearly, if b50,
the process reduces to a standard one andP(x)5G(x)
[(2pa)21/2exp(2x2/2a).

Since the quadratic dependence ofsy
25a1by2 on y gives

rise to a power-law decay ofP(x), the question is whether
weaker dependence, for instance, the linear relation

sy
2[a1buyu, ~4!

may have associated a faster decaying PDF. Here, we s
that this is indeed the case, the corresponding PDF de
exponentially as

P~x!;exp~2auxu!, when uxu→`, ~5!

and our aim is to calculate the value ofa exactly. Before
doing that, it is illustrative to visualize the behavior of seri
of random numbersxn , by plotting, for instance, their abso
lute valuesuxnu as a function ofn, for the standard and linea
cases, respectively, as shown in Fig. 1. Such series not
resemble very much the empirically observed variable vo
tility of stock prices, but may well find interesting applica
tions in a variety of physical processes.

Let us consider now the calculation of the decay ratea.
Following the approach employed in Ref.@5#, we consider
that in the limit of largeuxu, the integrand in Eq.~3! is domi-
nated by large values ofuyu and one can replace Eq.~4! by
sy

25buyu. Using the exponential ansatzP(y);exp(2auyu)
within the integrand of Eq.~3!, the calculation reduces to th
convolution

exp~2auxu!5
2

A2p
E

0

` dy

Aby
exp~2x2/@2by# !exp~2ay!,

~6!

which can be performed exactly~see, e.g., Ref.@10#! to yield

FIG. 1. A sequence of random numbersxn , plotted asuxnu vs n,
generated according to ARCH~1! rules, for a standard ARCH~1!
process withsy

25a1by2 (q52) and for an ARCH~1! process with
sy

25a1buyu (q51). In both cases we useda50.4 andb50.99,
yielding a mean variances2540 for q52 ands2'1.25 forq51,
respectively.
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t

ow
ys

ly
-

exp~2auxu!5A 2

ab
exp~2A2a/buxu!. ~7!

The equality holds when the prefactorA2/ab51 and we find
a52/b. To be noted is that the above exponential dec
actually corresponds to the exact shape of the PDF in
case thata50, which in this particular case reads

P~x!5
1

b
exp~22uxu/b!, ~8!

yielding a mean variances25b2/2 and a finite kurtosisk
[^x4&/s456. Note thatP(x) obeys the exact scaling rela
tion, sP(y)5(1/A2)exp(2A2y), with y5uxu/s. When a
.0, P(x) departs from the analytical result Eq.~8!. Some
numerical examples are reported in Fig. 2 for different valu
of a andb.

In what follows, we extend the previous results by sho
ing that for uxu→` different exponential decays of the typ

P~x!;exp~2auxub!, ~9!

with 0,b,2, can be obtained within ARCH~1! processes
by generalizing Eq.~4! to the form

sy
2[a1buyuq, ~10!

where 0,q,2. The cases with 0,b,1 correspond to
stretched exponential decay, while those with 1,b,2 to
stretched Gaussian behavior. Assuming the asymptotic f
Eq. ~9! for P(x), Eq. ~6! becomes

exp~2auxub!;
2

A2p
E

0

` dy

Abyq
exp~2x2/@2byq# !

3exp~2a yb!. ~11!

The leading asymptotic behavior of the integral, whenuxu
→`, can be obtained analytically by the saddle-po
method. The saddle occurs at

FIG. 2. The PDFP(x) vs x for ARCH~1! processes with vari-
able variancesy

25a1buyu ~see text for details!. ~a! b51 for a
51 ~top!, 0.4, and 0.01~bottom!. Fora50.01, the numerical results
almost coincide with the exact solution, Eq.~8!. ~b! a51 for b
50.5 ~bottom!, 1, and 1.5~top!.
9-2
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y* 5S qx2

2bab D 1/(q1b)

, ~12!

and we find

exp~2auxub!;exp~2Auxu2b/(q1b)!, ~13!

whereA5@(q1b)/(2b)#(2bab/q)q/(q1b). Thus, according
to Eq. ~13!, we obtain the relationsb52b/(q1b) and A
5a, yielding

b522q and a5
1

b S 2

q
~22q! D q/(22q)

, ~14!

which reduce to the previously discussed results wheq
51 ~i.e., simple exponential decay!, where b51 and a
52/b. We have verified the validity of the theoretical predi
tions, Eq. ~14!, by extensive numerical simulations. Som
illustrative examples are displayed in Fig. 3.

Let us consider finally the more general case in which
parameterb may change at each iteration step, in such a w
that it fluctuates according to the normal distributionG(b)
5(8pb̂2)21/2exp@2b2/(2b̂2)#, for b>0, with a constant
width b̂. The resulting PDF will now be given by the convo
lution

P̂con
(q)~x!;E

0

`

dbG~b!exp~2auxub!, ~15!

with a andb given in Eq.~14!. The integral can be evalu
ated using the saddle-point method, yielding the asympt
behavior

P̂con
(q)~x!;expF2

3

2
âq

2/3 S uxu

b̂
D 2b/3G , ~16!

whereâq5b̂b21(2b/q)q/b.
In the following, we argue that these generalized ARC

processes, with 0,q,2, can suitably describe stock mark
data and may be considered a useful alternative to the wi
used ARCH or GARCH processes@1,9#, corresponding to
the single caseq52.

FIG. 3. The asymptotic decay of the PDFP(x), plotted as
2 lnP(x) vs x (.0), for ARCH~1! processes with variable varianc
sy

25a1buyuq, whena50.01 andb51 for the cases:q51.5 ~bot-
tom!, q51.2, q51.0, q50.8, andq50.5 ~top!. The dashed lines
correspond to the generalized exponential decays expected
Eqs.~9! and ~14!.
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III. APPLICATION TO DAILY STOCK MARKET DATA

To this end, let us consider financial data from the N
York Stock Exchange, represented by the daily closing v
ues of the DJIA in the period from 1928 to 2001. The DJ
valuesDn are displayed by the continuous~top! line in Fig.
4, as a function of the trading dayn. Also included in the plot
are the results of model calculations and a straight line
explained below.

In the following, we wish to characterize the empiric
data by calculating the PDF of the day-to-day variations
Dn . For convenience, we consider the relative variations
the index by calculating the differences of their logarithms

yn5 lnDn2 lnDn21 , ~17!

from which we obtain the corresponding PDFP(y). The
resulting variance issDJIA

2 5^y2&2^y&251.231231024.
Note that due to the long-term growth rate~cf. Fig. 4!, the
mean valuê y&51.953131024.0, yet it is still small as
compared tosDJIA51.1131022. The PDFP(y) is displayed
by the full circles in Fig. 5, the latter seem to follow a simp
exponential shape near the center of the distribution. A clo
inspection of the data indicates, however, that the ac
shape deviates from the pure exponential one, and o
functional dependencies may fit the data better. At any r
this result tells us that an exponential decay is already a g
approximation to the shape ofP(y) and the models de
scribed in the preceding section may be appropriate in
case.

m

FIG. 4. Dow Jones Industrial Average~DJIA! Dn vs trading day
n, within the period from October 1928 to May 2001~upper line!.
The results for the present ARCH modelMn Eq. ~23!, have been
shifted downwards for clarity. The straight line corresponds to
constant bias growth, exp(mn) with m51.953131024, and is
shown for illustration.

FIG. 5. Scaling plot of the PDFP(x), plotted assP(x) vs x/s
for the DJIA ~full circles! and the ARCH model results@open
squares, cf. Fig. 4 and Eq.~23!#, both based on similar statistics
The continuous line represents the analytical form, Eq.~25!.
9-3
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MARKUS PORTO AND H. EDUARDO ROMAN PHYSICAL REVIEW E65 046149
We have, therefore, considered an ARCH~1! process@cf.
Eq. ~4!# as our starting point for modeling the DJIA, and fir
incorporated a constant bias rate,m51.953131024, in order
to simulate the exponential growth observed for the emp
cal data~the straight line in Fig. 4!. Specifically, we have
obtained a sequencexn , using Eq.~4!, and constructed the
daily index modelMn in the form

Mn5M0expS (
i 51

n

xi D exp~mn!. ~18!

Hence, we have the correspondenceMn→Dn and xn1m
→yn . The PDF is now centered atm, but the effect of the
bias term is expected to be small, yielding a negligible s
of P(x).

Two points can be raised now. The first is that by co
struction, this simple ARCH model yields an exponentia
decaying PDF, but as we have seen such a prediction is
conclusively obeyed by the DJIA. A second observation
gards the correlations of the absolute returns for the DJ
represented, e.g., by the autocorrelation function

C~ t !5
^uynuuyn1tu&2^uyu&2

^uyu2&2^uyu&2
, ~19!

results that are plotted in Fig. 6~a!. They indicate the exis-
tence of long-range correlations in the absolute returns
the DJIA, consistent with other studies reported in the lite
ture ~see, e.g., Liuet al. in Ref. @2#!. The abrupt decay a
aroundT51000 may be a finite size effect, due to the limit
number of data considered, and persistence over longer

FIG. 6. Correlations of absolute returns for the DJIA.~a! Auto-
correlation functionC(t) vs time lag t, Eq. ~19!, where ^uyu&
57.11031023 and^uyu2&51.22931024. The graph has been trun
cated at the first node ofC(t). The dashed line represents the b
haviorC(t);t2k and has the slopek50.15.~b! Fluctuation analy-
sis: Fluctuation functionF(l ) vs time scalel for the random walk
profile P(t) ~shown in the inset!. The continuous line displays th
behaviorF(l );l n, with n50.925. Note thatn andk are related
to each other byk5222n.
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scales cannot be excludeda priori. For our present purposes
however, we will consider that a crossover takes place
aroundT5700.

The temporal behavior of the autocorrelation functi
C(t) can be identified independently of Eq.~19! by looking
at the scaling behavior of the corresponding random w
‘‘profile’’ P(t), defined as

P~ t !5(
i 51

t

@ uyi u2^uyu&#. ~20!

The ‘‘roughness’’ of the profile tells us about the presence
absence of correlations in the stochastic series. It can
determined quantitatively by calculating the fluctuations
P(t) within a window ~time scale! of width l as

F~ l !5^@P~ t !2P~ t1l !#2&1/2, ~21!

~see, e.g.,@11#, and Liuet al. in Ref. @2# for more details!. It
is well known that if the autocorrelation function decays
C(t);t2k, within a given time scale, withk,1, the fluc-
tuations of the profile, Eq.~21!, display the power-law be-
havior F(l );l n, wheren512k/2, within the same time
scale. Note that fork>1, n sticks at its standard valuen
51/2, describing a simple diffusive behavior characteriz
by short-range correlations. An example of the latter is a
the case of exponentially decaying correlations,C(t)
;exp(2at), yielding againn51/2 for F(l ). The method
based on Eqs.~20! and ~21! has been extensively used
different context, ranging from financial data~as by Liuet al.
in Ref. @2#! to temperature fluctuations in the atmosphe
@11#.

The results of the fluctuation analysis, Eq.~21!, for the
DJIA are reported in Fig. 6~b!, yielding a power-law behav-
ior F(l );l n, over almost three decades, consistent with
valuen512k/250.925 expected from the results shown
Fig. 6~a!, wherek'0.15. These results can be confront
with the corresponding behavior of the simple linear ARC
process, Eq.~4!, displayed in Fig. 7. As is apparent from Fig
7~a!, the Markovian character of the ARCH process giv
rise to an exponentially decaying autocorrelation functio
consistent with a fluctuation function growing in the standa
diffusive fashion with time scale,F(l );l 1/2 @cf. Fig. 7~b!#.
We notice that all the model variants discussed in Sec
behave similarly. Clearly, our simple ARCH process, Eq.~4!,
needs to be modified.

To do this, we allow next the parameterb to fluctuate as
the process evolves. We have found that the simple cho

b→beff~n!5b01csT~n!T21/2, ~22!

whereb0 , c, andT are constants, withsT(n) given in Eq.
~1!, yields satisfactory results as we will see in the followin
The factorT21/2 in Eq. ~22! is introduced to compensate th
growth sT(n);T1/2, when T@1, thus making the fluctua
tions scale invariant. In Eq.~22!, b0 represents the lowe
cutoff for beff(n), while sT(n) is responsible for its fluctua
tions, calculated within the time horizonT, for a single ‘‘tra-
jectory’’ or realization of the process. Notice that in this wa
9-4



f,
od

ib-

th

fu
uc
en
ie

t
(

n

as,

nt

al
ed

y,
the

wn
or
s

hed
ese
ket
ults
d to
ng

q
-

i.e

ry,
pe

-
lope

AUTOREGRESSIVE PROCESSES WITH EXPONENTIALLY . . . PHYSICAL REVIEW E65 046149
the parameterbeff is controlled by the ARCH process itsel
thus keeping the number of relevant parameters in the m
essentially unchanged.

We then suggest the following ARCH model for descr
ing the daily DJIA data in the formyn5xn1m ~with m
51.953131024 for the period 1928–2001!, where xn
5Rs(xn21). The random processRs obeys the transition
probability distribution functionW(xn21{xn) given in Eq.
~2!, with

sn
25a1beff~n!uxn21u and

beff~n!5b01csT~n!T21/2, ~23!

wherea51026, b05231023, c52.74, T5700, andsT(n)
is given by Eq. ~1!. The resulting values Mn

5M0 exp((i51
n xi)exp(mn), for M0530 and 1<n<20000,

are plotted in Fig. 4, where they can be compared with
DJIA data. The corresponding PDFP̂(x) is displayed by the
open squares in Fig. 5, in very good agreement with the
circles for the DJIA. The associated autocorrelation and fl
tuation functions are reported in Fig. 8, in good agreem
with the empirical data. In this plot, the length of the ser
used was 10 times longer than that of the DJIA in order
avoid finite size effects. If the same number of pointsN
'20 000) is used,C(t) goes to zero already att'900. In-
terestingly, for larger values of the cutoffT (@700), C(t)
becomes independent ofT for t!T.

It is illustrative to note thatP̂(x) can be estimated in a
approximate way from the convolution@cf. Eq. ~15!#

P̂con~x!'E
0

`

dbG~b!Pb~x!, ~24!

FIG. 7. Same as in Fig. 6 for the simple ARCH process in E
~4!. ~a! Autocorrelation function:C(t) decays exponentially as in
dicated by the dashed line representing the functionC(t)
5exp(2t). ~b! Fluctuation analysis: The random walk profileP(t)
is now consistent with a standard random walk behavior,
F(l );l 1/2 and the straight line has slopen51/2.
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wherePb(x) is given by Eq.~8!, while the values ofb are
assumed to be normally distributed on long time scales
G(b)5(8pb̂2)21/2exp@2b2/(2b̂2)#, b>0, with a width b̂
characteristic of the time spanT ~see above!. The asymptotic
behavior of P̂con(x) can be obtained by the saddle-poi
method, yieldingP̂con(x);exp(26@uxu/(4b̂)#2/3), which corre-
sponds to the caseq51 in Eq.~16!. Assuming that the latter
holds for all x, the following scaling form forP̂con(x) is
obtained:

s P̂con~y!5A35

6p
exp~2gy2/3!, with y5uxu/s,

~25!

where s25(35/36)b̂2 and g5(105)1/3/2. The analytical
form Eq. ~25! is in excellent agreement with the numeric
results for P̂(x) as is apparent from Fig. 5. The stretch
exponential decay withb52/3 @Eq. ~25!# corresponds to the
caseq54/3 in Eq. ~10!. Although both processes, Eq.~23!
and Eq.~10!, have identically decaying PDF’s, they displa
respectively, long-range and short-range correlations in
absolute returns.

IV. CONCLUSIONS

We have discussed generalizations of the well kno
ARCH~1! processes, originally introduced in finance, f
which the corresponding probability distribution function
display general exponential decay, ranging from stretc
exponential to stretched Gaussian behavior. We apply th
models to the description of daily changes of a stock mar
index, such as the Dow Jones Industrial Average. The res
suggest that a history of the process is, however, require
simulate the empirical data in a more realistic way, yieldi

.

.,

FIG. 8. Same as in Fig. 6 for the ARCH process with histo
Eq. ~23!. ~a! Autocorrelation function: The dashed line has the slo
k50.15 as in Fig. 6~a!, and is shown as a guide.~b! Fluctuation
analysis: The random walk profileP(t) displays long-range corre
lations. The straight line has been drawn as a guide and has s
n50.925, as in Fig. 6~b!.
9-5
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a process which is no longer Markovian. Despite this co
plication, the model remains simple and, therefore, attrac
to be used in standard Monte Carlo simulations of long-te
market scenarios. In addition to such obvious application
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the financial context, these generalized ARCH processes
corporating history may turn out to be appropriate for mo
eling a broad spectrum of stochastic phenomena in nat
and physical sciences.
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