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We consider autoregressive conditional heteroskedastiéiBCH) processes in which the variantzr%
dependdinearly on the absolute value of the random variajobsaiz a+b|y|. While for the standard model,
whereo§=a+ by?, the corresponding probability distribution functi®DP P(y) decays as a power law for
|y|—c0, in the linear case it decays exponentiallyR(y/) ~ exp(—aly|), with «=2/b. We extend these results
to the more general casr%/:a+ bly|9, with 0<qg<2. We find stretched exponential decay fox <2 and
stretched Gaussian behavior forx@< 1. As an application, we consider the cagel as our starting scheme
for modeling the PDF of dailylogarithmig variations in the Dow Jones stock market index. When the history
of the ARCH process is taken into account, the resulting PDF becomes a stretched exponential gven for
=1, with a stretched exponeg=2/3, in a much better agreement with the empirical data.
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[. INTRODUCTION feature of the model may be hidden in the “history” of the
process itself, and should be taken into account. This
Extensively employed in finance today, autoregressivds achieved by calculating, at each stap the standard
conditional heteroskedasticiARCH) processes have been deviation
constructed to mimick théoften quite strongvariable vola-

tility of stock prices, by letting the variance of the random a1(N)= ()= (X)) ()
process being a function of the random variable itf&]2]. _
Interestingly, ARCH processes are characterized by poweRVer the previoud values of the proces$x,_1, ... X7}

law tails in the associated probability distribution functions The quantityor(n) is used, together with, ,, to generate
(PDF’ [3-5]. Since power laws are widespreadly observedh® next value, , from a standard distribution. The original
also in natural science phenomel@d, the applicability of standelrd ARCH process forresponds to the dasd, i.e.,
ARCH processes to such fields as physics and biology caff2(")=0. Here we user =700 steps, aimed at fitting the
thus be expected to grow in popularity in coming years. DePresent data for the DJIA, where volatility correlations per-

spite the ubiquitous character of power-law decay in severa?ISt up to a time I’.IOI’IZOI’]. of ab.out 700 trading da(y._e.,
~3 yr). Incorporating a history in the model makes it non-

physmal anq nat.ura}l science prpblems, a.varlety of eXponer}\'/larkovian, but it still remains simpler than the extensively
tially decaying distribution functions, ranging from stretched employed generalized ARCHSARCH) processes, in which
exponentiasee, e.g., Rel.7]) to stretched Gaussian decay the variance is a function of several of its previous values

(see, e.g., Rel8]), are also observed which, in most cases,q) Finally, Sec. IV is devoted to the summary of our main
are a result of long-range correlations in the system. Thesgits and conclusions.

guestion we wish to address here is how such different types
of exponentially decaying distributions can be modeled
within the context of short-range correlations, as for instance
in the case of ARCH processes, and how can they be imple-
mented for describing stock market behavior. Let us consider the simplest case, i.e., an ARQHbro-

The paper is organized according to the following lines.cess[1]. It is defined as an iterative map of the forxy
In Sec. Il, we briefly recall the definition and simplest ver- =R(x,_;), where the outcome,,, after thenth iteration
sion of an ARCH process, and discuss how it can be modistep, depends only on its previous vaie ;, andR(y) is a
fied to yield exponentially decaying PDF’'s. Secondly, werandom process. The latter is completely specified by the
generalize the ARCH model to the case of stretched exparansition probability distribution functiolV(y~x), gener-
nential and stretched Gaussian PDF’s. In Sec. lll, we applylly assumed to be a Gaussian distribution,
the results of the preceding section to financial data, aiming

Il. ARCH (1) PROCESSES AND THEIR
GENERALIZATIONS

at describing the daily variations of a stock market index, in 1 X2
particular, of the Dow Jones Industrial AveragBJIA) W(yx)= sexp — — |, (2
within the period from 1928 to 2001. The comparison be- 2may 20

tween the empirical data and the model predictions indicates

that the latter do not display all the characteristic aspects ddbeying the normalization conditiofi” .dxW(y~x)=1.

the market, in particular, the long-range correlations of absoFor standard ARCH) processe&r§=a+ by?, wherea>0

lute returns(or volatility). This suggests us that the missing andb=0 are the model parameters. In this case, the average
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FIG. 1. A sequence of random numbers plotted agx,| vsn, = 1?10 -
generated according to ARGH rules, for a standard ARCH) = 107 F
process withr§= a+by? (q=2) and for an ARCH1) process with 107
a§=a+ bly| (g=1). In both cases we usem=0.4 andb=0.99, 10720
yielding a mean variance®=40 for q=2 ando?~1.25 forq=1, 50 10 0 10 20
respectively. X

variance is(o?)=a/(1—b). It can be shown that the PDF FIG. 2. The PDFP(x) vs x for ARCH(1) processes with vari-

P(x) for ARCH(1) processes satisfies the self-consisten@ble variancesj=a+bly| (see text for details (@) b=1 for a
equation[1,3,5 =1 (top), 0.4, and 0.01bottom. Fora=0.01, the numerical results

almost coincide with the exact solution, E@®). (b) a=1 for b
o =0.5 (bottom), 1, and 1.5(top).
Poo= | aywiymn Py, @

2
which decays as a power la®(x) ~ x| ¢, for [x| —, with expl — alx)= NV ab exp( — 2alblx]). 0
a related to the parameterb by b (¢"?2
= 2(a—1)/2p(a/2)/\/; [3,5] (see alsd4]). Clearly, if b=0, The equality holds when the prefactqﬁﬁ/ab= 1 and we find
the process reduces to a standard one EIGRi)=G(X) a=2/b. To be noted is that the above eXponential decay
=(2ma)  Y%exp(—x?/2a). actually corresponds to the exact shape of the PDF in the
Since the quadratic dependence;@f:a+ by?onygives Case that=0, which in this particular case reads
rise to a power-law decay #(x), the qugstion is W_hether a 1
weaker dependence, for instance, the linear relation P(x)= m exp(—2|x|/b), (8

U§Ea+b|y|’ . . . 2 K2 .. .
yielding a mean variance“=hb</2 and a finite kurtosisc

may have associated a faster decaying PDF. Here, we shoﬁ(x4>/04:6- Note thatP(x) obeys the exact scaling rela-

that this is indeed the case, the corresponding PDF decay®n, oP(y)=(1/\/2)exp2y), with y=|x|/o. When a

exponentially as >0, P(x) departs from the analytical result E@®). Some
numerical examples are reported in Fig. 2 for different values
P(x)~exp —a|x|), when |x|—x, (5 ofaandb.

In what follows, we extend the previous results by show-

and our aim is to calculate the value afexactly. Before ing that for|x|— o different exponential decays of the type
doing that, it is illustrative to visualize the behavior of series

of random numberg,,, by plotting, for instance, their abso- P(x)~exp — a|x|?), 9
lute valuegx,| as a function oh, for the standard and linear _ o

cases, respectively, as shown in Fig. 1. Such series not on}fith 0<B<2, can be obtained within ARGH) processes
resemble very much the empirically observed variable volaby generalizing Eq(4) to the form

tility of stock prices, but may well find interesting applica- 2_ q

tions in a variety of physical processes. oy=a+blyl?, (10

Let us consider now the calculation of the decay iate | hare 0<q<2. The cases with €8<1 correspond to

Following the approach employed in R¢6], we consider  qratched exponential decay, while those witkt <2 to

th"’;t ij” éhe| limit of Ilargdx|, thedintegrand in EIC(.3) iISE dorEi- stretched Gaussian behavior. Assuming the asymptotic form
nate

ate y large values of| an Jone can replace &) by Eq. (9) for P(x), Eq. (6) becomes

ay=bly|. Using the exponential ansai(y)~exp(—alyl)
within the integrand of Eq(3), the calculation reduces to the

. 2 (= dy )
convolution exp(—a|x|5)~E . \/?yq exp(—x?/[2by?])
2 (=d _
exti—alx)= —| —biy exp( —x4[2by])expi — ay), xexp(—a ). ay

(6) The leading asymptotic behavior of the integral, whzh
—o, can be obtained analytically by the saddle-point
which can be performed exactigee, e.g., Ref10]) to yield = method. The saddle occurs at
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FIG. 3. The asymptotic decay of the POH{x), plotted as
—InP(x) vs x (>0), for ARCH(1) processes with variable variance
o§=a+ b|y|9, whena=0.01 ando=1 for the casesq=1.5 (bot-
tom), g=1.2, g=1.0, g=0.8, andq=0.5 (top). The dashed lines

correspond to the generalized exponential decays expected frofP"S

Egs.(9) and(14).

qx? \ Y@+
Y :(—Zbaﬁ) ) (12
and we find
expl — a|x|#) ~exp(— A|x|2F/(a+A)), (13

whereA=[(q+ B)/(2b)]1(2baB/q)¥@*A Thus, according
to Eqg. (13), we obtain the relationg=2p/(q+ B) and A
=, yielding

1/2 )q/(Z—Q)

B=2—qg and azg(a(z—q) , (14

which reduce to the previously discussed results when
=1 (i.e., simple exponential dechywhere =1 and «

=2/b. We have verified the validity of the theoretical predic-
tions, Eq.(14), by extensive numerical simulations. Some

illustrative examples are displayed in Fig. 3.
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FIG. 4. Dow Jones Industrial AveragBJIA) D,, vs trading day
n, within the period from October 1928 to May 20Qdpper line.
The results for the present ARCH moddl, Eq. (23), have been
shifted downwards for clarity. The straight line corresponds to a
tant bias growth, expf) with ©=1.9531x10"4, and is
shown for illustration.

IIl. APPLICATION TO DAILY STOCK MARKET DATA

To this end, let us consider financial data from the New
York Stock Exchange, represented by the daily closing val-
ues of the DJIA in the period from 1928 to 2001. The DJIA
valuesD,, are displayed by the continuod®p) line in Fig.

4, as a function of the trading dawy Also included in the plot
are the results of model calculations and a straight line as
explained below.

In the following, we wish to characterize the empirical
data by calculating the PDF of the day-to-day variations of
D, . For convenience, we consider the relative variations of
the index by calculating the differences of their logarithms as

Yn=INDp—=InDy_y, 17
from which we obtain the corresponding POFKy). The
resulting variance iso3;,=(y%) —(y)?=1.2312x10*.
Note that due to the long-term growth raig. Fig. 4), the

_ —4 Lo o
Let us consider finally the more general case in which thénean valugly)=1.9531x 10770, yet it is still small as
parameteb may change at each iteration step, in such a waypempared tarp;,=1.11x10"“. The PDFP(y) is displayed

that it fluctuates according to the normal distributi@i(b)
=(8wh?) ~ex —b%(26%)], for b=0, with a constant

width b. The resulting PDF will now be given by the convo-
lution

ﬁ(c‘g)n(x)~fxdbG(b)exp(—a|x|'3), (15)
0

with « and B8 given in Eq.(14). The integral can be evalu-

ated using the saddle-point method, yielding the asymptotic

behavior
3. |X| 2813
_ P~ | 12

wherea,=bf"1(2p/q)¥".

P(Cg)n(x)~exr{

In the following, we argue that these generalized ARCH
processes, with € q<2, can suitably describe stock market

y the full circles in Fig. 5, the latter seem to follow a simple
exponential shape near the center of the distribution. A closer
inspection of the data indicates, however, that the actual
shape deviates from the pure exponential one, and other
functional dependencies may fit the data better. At any rate,
this result tells us that an exponential decay is already a good
approximation to the shape d?(y) and the models de-
scribed in the preceding section may be appropriate in this
case.
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FIG. 5. Scaling plot of the PDIP(x), plotted assP(x) vs x/o

data and may be considered a useful alternative to the widelpr the DJIA (full circles) and the ARCH model resultfopen

used ARCH or GARCH processé¢4,9], corresponding to
the single casg=2.

squares, cf. Fig. 4 and Eq23)], both based on similar statistics.
The continuous line represents the analytical form, §).
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scales cannot be excludadpriori. For our present purposes,
however, we will consider that a crossover takes place at
aroundT=700.

The temporal behavior of the autocorrelation function

(@) C(t) can be identified independently of Ed.9) by looking
, , , , . at the scaling behavior of the corresponding random walk
10° 10" 102 10° 10* “profile” P(t), defined as
t
4 T T t
107 ¢ , 1
NS P(t)=2 [lyil=(IyD]. (20
10° F ™ ! aet i=1
§ 102 ._20 1
& o The “roughness” of the profile tells us about the presence or
! o 4 (b) ] absence of correlations in the stochastic series. It can be
L A determined quantitatively by calculating the fluctuations of
10° 10’ 122 10° 10* P(t) within a window (time scalg of width / as
7\ — _ 12\ 1/2
FIG. 6. Correlations of absolute returns for the DJ(&). Auto- F(7)=([P)—P(t+/)]9™ (22)

Czogiﬂgzofgn::gaSf;;:f_;é&ié?%.t’T:eqér(alsL’ hvgzet:gér'nylgun- _(see, e.g.f11], and Il_iu et al. in Ref. [2]. for more details It
cated at the first node dZ(t). The dashed line represents the be- is well lfrlowr_] t_hat if t_he al’!tocorrelatlon_funcnon decays as
havior C(t) ~t™* and has the slope=0.15.(b) Fluctuation analy- C(t)_~t » within a given time S_Cale' withk<1, the fluc-
sis: Fluctuation functiofF (/) vs time scale’ for the random walk ~ tuations of the profile, Eq(21), display the power-law be-
profile P(t) (shown in the inset The continuous line displays the havior F(/)~/", wherev=1—«/2, within the same time
behaviorF(/)~ /", with v=0.925. Note that and « are related ~ scale. Note that fox=1, v sticks at its standard value
to each other bx=2-2y. =1/2, describing a simple diffusive behavior characterized
by short-range correlations. An example of the latter is also
We have, therefore, considered an AR@Hprocesgcf.  the case of exponentially decaying correlatior(t)
Eq. (4)] as our starting point for modeling the DJIA, and first ~exp(-at), yielding againv=1/2 for F(/). The method
incorporated a constant bias rate=1.9531x 104, in order ~ based on Eqgs(20) and (21) has been extensively used in
to simulate the exponential growth observed for the empiridifferent context, ranging from financial de@s by Liuet al.
cal data(the straight line in Fig. % Specifically, we have in Ref.[2]) to temperature fluctuations in the atmosphere
obtained a sequenos,, using Eq.(4), and constructed the [11].
daily index modelM,, in the form The results of the fluctuation analysis, EQ1), for the
DJIA are reported in Fig. ®), yielding a power-law behav-
ior F(/)~ /", over almost three decades, consistent with the
explun). (18 valuev=1- k/2=0.925 expected from the results shown in
Fig. 6(@), where k~0.15. These results can be confronted
with the corresponding behavior of the simple linear ARCH
Hence, we have the correspondendg—D, and x,+u  process, Eq4), displayed in Fig. 7. As is apparent from Fig.
—Yn. The PDF is now centered at, but the effect of the 7(a), the Markovian character of the ARCH process gives
bias term is expected to be small, yielding a negligible shiftrise to an exponentially decaying autocorrelation function,
of P(x). consistent with a fluctuation function growing in the standard
Two points can be raised now. The first is that by con-diffusive fashion with time scald (/) ~ /2 [cf. Fig. 7(b)].
struction, this simple ARCH model yields an exponentially We notice that all the model variants discussed in Sec. I
decaying PDF, but as we have seen such a prediction is nothave similarly. Clearly, our simple ARCH process, &),
conclusively obeyed by the DJIA. A second observation reneeds to be modified.
gards the correlations of the absolute returns for the DJIA, To do this, we allow next the parameteto fluctuate as

n
anMOexp<E Xi
i=1

represented, e.g., by the autocorrelation function the process evolves. We have found that the simple choice
{1YallYoe iy Iy )2 b= be(m) =bo+ cor(mT (22
C(t)= : (19
(y1»—=(lyh? wherebg, ¢, andT are constants, witlo+(n) given in Eq.

(1), yields satisfactory results as we will see in the following.
results that are plotted in Fig(#. They indicate the exis- The factorT~*?in Eq.(22) is introduced to compensate the
tence of long-range correlations in the absolute returns fogrowth or(n)~TY2, when T>1, thus making the fluctua-
the DJIA, consistent with other studies reported in the literations scale invariant. In Eq22), by represents the lower
ture (see, e.g., Livet al. in Ref. [2]). The abrupt decay at cutoff for beg(n), while o(n) is responsible for its fluctua-
aroundT = 1000 may be a finite size effect, due to the limited tions, calculated within the time horizdh for a single “tra-
number of data considered, and persistence over longer timjectory” or realization of the process. Notice that in this way,
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FIG. 7. Same as in Fig. 6 for the simple ARCH process in Eq. FIG. 8. Same as in Fig. 6 for the ARCH process with history,
(4). (@) Autocorrelation functionC(t) decays exponentially as in- Eq. (23). (a) Autocorrelation function: The dashed line has the slope
dicated by the dashed line representing the functioft)  «=0.15 as in Fig. @), and is shown as a guidéb) Fluctuation
=exp(-t). (b) Fluctuation analysis: The random walk profiét) ~ analysis: The random walk profilé(t) displays long-range corre-

is now consistent with a standard random walk behavior, i.e.lations. The straight line has been drawn as a guide and has slope
F(/)~/*2 and the straight line has slope=1/2. v=0.925, as in Fig. @).

the parameteby is controlled by the ARCH process itself, where Py(X) Is given by Eq_.(8), while the valu_es ob are
thus keeping the number of relevant parameters in the modglssumed t? be normally dlsEnbuted on Io-ng t|me.scaIAes as,
essentially unchanged. G(b)=(8wb%)~"exd —b%(2b%)], b=0, with a width b

We then suggest the following ARCH model for describ- characteristic of the time span(see above The asymptotic
ing the daily DJIA data in the forny,=x,+u (with behavior of P.,(x) can be obtained by the saddle-point
=1.9531x10"* for the period 1928-2001 where X,  method, yielding? .o (x) ~ exp(6[|x|/(4b)]??), which corre-
=Rs(Xn-1). The random procesg, obeys the transition sponds to the casg=1 in Eq.(16). Assuming that the latter
probability distribution functiodW(x,-17x,) given in Ed.  noids for all x, the following scaling form forP(x) is
(2), with obtained:

o2=a+bg(n)|x,_1] and A = y |
oPeoy)= EeXp( —yy®), with y= |X|/a’,
Best(N)=bo+cor(N)T™ V2, (23 (25)

wherea=10"%, by=2x10"3, c=2.74,T=700, andor(n)  where o?=(35/36)p?> and y=(105)"%2. The analytical

is given by Eg. (1). The resulting values M, form Eq.(25) is in excellent agreement with the numerical
=Mg expEiLx)expun), for My=30 and n=<20000, results forP(x) as is apparent from Fig. 5. The stretched
are plotted in Fig. 4, where they can be compared with thexponential decay witl=2/3 [Eq. (25)] corresponds to the
DJIA data. The corresponding PO¥x) is displayed by the caseq=4/3 in Eq.(10). Although both processes, E(®3)
open squares in Fig. 5, in very good agreement with the fulend Eq.(10), have identically decaying PDF's, they display,
circles for the DJIA. The associated autocorrelation and flucrespectively, long-range and short-range correlations in the
tuation functions are reported in Fig. 8, in good agreemenabsolute returns.
with the empirical data. In this plot, the length of the series

used was 10 times longer than that of the DJIA in order to

A . 3 IV. CONCLUSIONS
avoid finite size effects. If the same number of points (

~20000) is usedC(t) goes to zero already at=900. In- We have discussed generalizations of the well known
terestingly, for larger values of the cutoff (>700), C(t) = ARCH(1) processes, originally introduced in finance, for
becomes independent &ffor t<T. which the corresponding probability distribution functions
It is illustrative to note thaP(x) can be estimated in an diSPlay general exponential decay, ranging from stretched
approximate way from the convolutidef. Eq. (15)] exponential to stretched Gaussian behavior. We apply these

models to the description of daily changes of a stock market

. index, such as the Dow Jones Industrial Average. The results

lscon(X)*f dbG(b)P,(x), (24) syggest that a higtpry of the' process is, hqw_ever, req_uire;d to
0 simulate the empirical data in a more realistic way, yielding
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a process which is no longer Markovian. Despite this com+the financial context, these generalized ARCH processes in-
plication, the model remains simple and, therefore, attractiveorporating history may turn out to be appropriate for mod-
to be used in standard Monte Carlo simulations of long-terneling a broad spectrum of stochastic phenomena in natural
market scenarios. In addition to such obvious applications irand physical sciences.
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